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Abstract 

This study considers the classification of acoustic sig- 
natures using features extracted at multiple scales 
from hierarchical models and a wavelet transform. In 
the model-based approach, multiscale spectral fea- 
tures are extracted with hierarchical autoregressive 
and moving average (ARMA) models. The model- 
ing approach is also used for monitoring vehicular 
activities from an AR spectrogram. The AR spec- 
trogram shows engine speed, gear changes, and other 
vehicular activities well, because it represents domi- 
nant spectral peaks better than a short-time Fourier 
transform. In the wavelet-transform based approach, 
multiscale features are obtained with a wavelet trans- 
form. Multiscale classification methods were applied 
to acoustic data collected at different test tracks un- 
der various testing conditions. In this experiment, 
about 92 percent of vehicles were correctly identified. 

Introduction 

The classification of ground vehicles using acoustic 
signals requires reliable features that can classify tar- 
gets in the presence of background noise and at dif- 
ferent signal levels. We propose two types of multi- 
scale features that we have applied to classifying ve- 
hicle types in data obtained under various operating 
conditions. We extracted multiscale features using a 
hierarchical model and a wavelet transform. In the 
hierarchical modeling approach, the acoustic signal 
at the finest scale is modeled by an autoregressive 
(AR) model. Then the features at coarser scales are 
obtained by a hierarchical modeling approach from 

the finer scale features. The multiscale spectral fea- 
tures obtained by the hierarchical modeling approach 
represent spectral peaks at multiple scales, and many 
vehicle characteristics, such as engine speed, can be 
well monitored by the use of spectral features. The 
wavelet transform expands a signal in a scale space 
by projecting signals to orthogonal bases, and it com- 
pacts the signal low-order wavelet coefficients. There- 
fore, the set of low-order wavelet coefficients contains 
sufficient information to classify different targets, and 
these coefficients can be used as multiscale features. 

The classification is done by a minimum distance clas- 
sifier and an artificial neural network classifier that 
uses multiscale features. A minimum distance classi- 
fier is used with the features extracted by a hierarchi- 
cal model, and a neural network classifier is applied 
when the wavelet features are used. Several experi- 
ments have been done using ARL acoustic database 
containing acoustic signals from both tracked and 
wheeled vehicles. The acoustic signals were recorded 
at different test tracks under various operating con- 
ditions, such as different speed, loading, etc. In the 
classification experiments, each acoustic signal was 
segmented into 250-ms-long segments; half the seg- 
ments were used for training, and the rest for testing. 
In the classification experiment, up to 92 percent of 
targets were correctly classified when wavelet features 
were used. 

Hierarchical Model 

Suppose that an acoustic signal follows an AR model. 
Then the acoustic signal is described by AR param- 
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eters or poles of AR polynomials. The poles of AR 
polynomials are related to spectral peaks, and dom- 
inant spectral peaks are well detected by the power 
spectral density estimated by an AR model that is 
fitted to the signal. As we showed elsewhere [4], 
the models at the coarse scale are determined by the 
model at a finer scale. Therefore, we can obtain the 
spectral features at a coarser scale from the AR pa- 
rameters estimated at a finer scale by using a hier- 
archical modeling approach. For the acoustic signal 
experimented with, we first fitted an AR(30) model to 
the acoustic signal. Using the theorem presented ear- 
lier [4], we obtained the model parameters at coarse 
scales from finer scale parameters without performing 
expensive smoothing and down-sampling. 

For application to acoustic signature classification, we 
extracted multiscale features at five different scales 
using the hierarchical modeling approach. At each 
scale, 15 pairs of complex poles were obtained from 
an AR(30) polynomial and used as features. From 
the AR polynomial, the power spectral density can 
be estimated. By applying the AR power spectrum 
estimation algorithm at a fixed time interval (for ex- 
ample, every 250 ms), we can obtain an AR power 
spectrogram. In the experiment, we observed the ve- 
hicle activities using the AR power spectrogram. 

Wavelet Transform 

A wavelet transform, defined by the repeated applica- 
tion of quadrature mirror filters (QMFs), decomposes 
a signal in a scale space. Figure 1 shows a block dia- 
gram of a discrete wavelet transform (DWT) and an 
inverse discrete wavelet transform (IDWT). 

A DWT is an orthogonal transform, and many 
wavelet bases are available. One of the wavelet bases, 
known as Coiflet, possesses 2k vanishing moments 
(where k is the order of the wavelet) and has good 
time-frequency localization characteristics. Figure 2 
shows the decimation function and wavelet function 
of fifth-order Coiflet, and Figure 3 shows the fre- 
quency response of fifth-order Coiflets. For the ex- 
traction of multiscale wavelet features, we used fifth- 
order Coiflet basis function. 

Experimental Results 

The features extracted by hierarchical models and 
wavelet transforms were used to classify acoustic data 
collected at Grayling, Michigan, and Aberdeen Prov- 
ing Ground, Maryland. For the classification of hier- 

Figure 1: Discrete wavelet transform and inverse dis- 
crete wavelet transform. 

archical model features a minimum distance classifier 
was used, and a neural network classifier was used for 
classification of wavelet features. 

Acoustic data from ground vehicles were gathered at 
Grayling and Aberdeen by RNADS [1], a remote sen- 
sor architecture. The data set included one tracked 
and one wheeled vehicle, both powered by a 12 cylin- 
der diesel engines. The remote sensor consists of 
an 8-ft-diameter circular array of Knowles BL 1994 
ceramic microphones, with six microphones placed 
along the perimeter and a seventh microphone at the 
center of the array. The vehicle types and test con- 
ditions of each test data are summarized in Table 1. 

The multiscale feature extraction approaches were 
applied to the acoustic data. As a test of the ac- 
curacy of the classification algorithms, each data file 
was divided into segments 512 points (250 ms) long. 
Half the segments were used for training and the 
rest for testing. Figure 4 shows the AR spectrogram 
for two data files. Both spectrograms were obtained 
from a type 2 vehicle, and the data were collected 
at Grayling. The change in engine speed can be ob- 
served from the AR spectrogram. For example, the 
gear change is detected in the second AR spectrogram 
in Figure 4. 

We extracted the multiscale features using the hierar- 
chical modeling approach. We extracted the spectral 
peaks at the finest scale by fitting an AR(30) model 
to the data at the finest scale, and obtanied the fea- 
tures at coarse scales by the hierarchical modeling 
approach. A minimum distance classifier was trained 
with half the samples obtained from the data set, and 
tested with the rest of the samples.  In our experi- 
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Figure 2: Fifth-order Coiflet decimation function and wavelet function. 
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Figure 3: Frequency response of fifth-order Coiflet wavelet: Dilation filter (top) and wavelet filter (bottom). 

Table 1: Vehicles tested and test conditions. 

Vehicle Type 
Tl (tracked) 
Tl (tracked) 
Tl (tracked) 
Tl (tracked) 
Tl (tracked) 
Tl (tracked) 
T2 (wheeled) 
T2 (wheeled) 
T2 (wheeled) 
T2 (wheeled) 
T2 (wheeled) 
T2 (wheeled) 
T2 (wheeled) 
T2 (wheeled) 

Test Field 
APG2 
APG2 

Grayling 
Grayling 
Grayling 
Grayling 
Grayling 
Grayling 
Grayling 
Grayling 
Grayling 
Grayling 
Grayling 
Grayling 

Speed 
lOmph 
20mph 
lOmph 
10 mph 
20 mph 
20 mph 
15 mph 
15 mph 
20 mph 
20 mph 
15 mph 
15 mph 
20 mph 
20 mph 

Other 
sensor 1 
sensor 1 
high gear 
high gear 
high gear 
high gear 
3rd gear 
2nd gear 
3rd gear 
3rd gear 
2nd gear 
2nd gear 
3rd gear 
3rd gear 

ment, 76.7 percent of the type Tl (tracked) vehicles 
were correctly classified, and 83.5 percent of the type 
T2 (wheeled) vehicles were correctly classified. 

The wavelet features were also tested. For each data 
sample, 512 points (250 ms) long, a discrete wavelet 
transform was applied and wavelet coefficients was 
computed. In our experiment, a fifth-order Coiflet 
was used as a wavelet basis function. Figure 5 shows 
the changes in lower 64 coefficients over time. Each 
horizontal line represents 64 low-order wavelet coef- 
ficients computed from a single segment, 512 points 
long. The data files used in this experiment are from 
Grayling, and contain acoustic data from wheeled ve- 
hicles in the third gear. 

We used neural network classifier to classify acoustic 
signals using wavelet features. We used 32 low-order 
wavelet coefficients as features, and applied the back- 
propagation algorithm for 1000 epochs. Half the data 
samples of 512 points (250 ms) long were used for 
training and the rest for testing. The results were 
that 83 percent of type Tl (tracked) vehicles and 92 
percent of type T2 (wheeled) vehicles were correctly 
classified. 
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Figure 4: AR spectrogram of two acoustic signatures, gr55s3 and gr58s3. In the second data, the gear change 
is detected 

Figure 5: First 64 wavelet coefficients extracted from two acoustic signatures. 

Discussions 

We have presented classification results with multi- 
scale features obtained by hierarchical modeling and 
wavelet transforms. In a classification experiment 
with the ARL acoustic database containing acous- 
tic signatures from tracked and wheeled vehicles at 
various operating conditions, about 92 percent of tar- 
gets were correctly classified. More experiment with 
larger classes and data sets are currently being done, 
and will be presented in the near future. 
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